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Abstract—A generalized method for determining thermal resistances of media experiencing non-uniform
flux distributions has been evolved. The method was applied to the analysis of heat transfers in a finned
tube, employed as an absorber in a solar-energy collector. The present study demonstrates that, under
non-uniform flux distribution, the values of thermal resistances predicted when assuming a uniform flux
distribution are generally lower than the actual values encountered. However, for a finned-tube absorber
in a solar-energy collector, this is compensated (either partly or overwhelmingly, depending on the particular
characteristics of the collector), by the counteracting effect of the distributed nature of the device, which
results in an axial variation of temperature.

1. INTRODUCTION

IN MOST solar-energy collectors a temperature differ-
ence ensues during operation between the absorber
surface, where the solar radiation is collected, and
the working fluid. This is due to the finite thermal
resistance of the elements through which the collected
flux passes before reaching the working fluid. The
effect of this temperature drop on the collector’s ther-
mal performance can be expressed by an efficiency
factor F’, which is defined as the ratio of the actual
useful energy gain by the working fluid to the gain
that would result if the collector’s absorbing surface
had been at the same local fluid temperature [1]. The
presence of the F” factor in the Hottel-Whillier—Bliss
expression of the collector efficiency accounts for this
effect [1], i.e.

1 =F1y—F U(T;— Tas). )

The factors affecting F” are considered in this study.
In particular the case of a finned absorber, where the
effect of this factor becomes of increasing importance,
has been analysed.

2. ANALYSIS

For most geometries the collector efficiency factor,
F’, can be expressed as the ratio of two thermal resist-
ances [1], namely

1/IJL‘Ar

F= 1/UpA, @

where U, and U, are the heat-transfer coefficients
from the absorber and the working fluid, respectively,

+ Author to whom correspondence should be addressed.

to the ambient environment. The present analysis is
developed for absorber geometries for concentrating
solar-energy collectors, although the results are appli-
cable equally to non-concentrating collectors.

The half cross-section of a finned absorber is shown
in Fig. 1. The particular geometry illustrated has been
proposed [2] as a more efficient alternative absorber
configuration for a CPC collector than a tubular
absorber (i.e. a tube of diameter D in Fig. 1). With
respect to its thermal resistance, the particular shape
of the fin shown in Fig. 1 is irrelevant, its length
wy and thickness J; being the only parameters to be
considered. Thus, the problem is equivalent to that of
a flat fin of the same length and thickness (this is
depicted by dashed lines in Fig. 1).

Duffie and Beckman [1] provided analytical
expressions for F’ of a finned absorber which have the
following inherent simplifying assumptions:

(i) the variation of temperature in the axial direc-
tion along the fluid flow path was neglected and an
average temperature was taken;

(ii) temperature in the radial direction of the tube
wall was constant.

Wijeysundera [3] studied the problem without mak-
ing the first assumption for various absorber geome-
tries ; in all cases the resulting value of F’ was up to
4% greater than that given by Duffie and Beckman
[1]. In the case of a finned tube, the assumption of a
constant tube temperature is not realistic and will
result in more favourable (i.e. higher) values for the
F’ factor. This has been quantified in the present study
through a more detailed examination of the heat
transfer in the cross-section shown in Fig. 1. The axial
variation of temperature has not been considered, so
the first assumption still holds.

The collector efficiency factor is analysed in the
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NOMENCLATURE

absorber area of the collector [m?]
ratio of the aperture area to the
absorber area in a concentrating
collector
exterior and interior diameters of a
tubular absorber, respectively

(Fig. 1) [m]
exterior and internal diameters of a tube
in a finned absorber, respectively
(Fig. 1) [m]
interior diameter of the fluid layer
(Fig. 4) (m]
fin efficiency (equation (9))

collector efficiency factors for a
uniform and a non-uniform flux
distribution, respectively
corrective factor for thermal resistances
heat-transfer coefficients under a
uniform and a non-uniform flux
distribution, respectively [Wm~?K ']
thermal conductivity [Wm™ 'K~ ]
integer
steady-state rate of heat transfer [W]
steady-state heat flux [Wm™?]
steady-state rate of local heat losses
(Fig. 2) Wm™]
thermal resistances under a uniform
and non-uniform flux, respectively
KW
area [m?]
infinitesimal increment of area [m’]
temperature [K]

tocal temperature difference between
a point on the external tube surface at
an angular position ¢ and the mean
fluid temperature [K]

Ui, U, heat-loss coefficients between the

absorber surface and the
environment, and the working fluid
and the environment, respectively

[Wm™K™]

w width {m].
Greek symbols

B non-dimensional coefficient
(equation {26)}

d thickness [m]

#, 5,  instantanecus and optical efficiencies
of the collector, respectively

¢ angle (Fig. 3) [deg]

@o,1, Po» angles defining the arc over which

the flux is delivered to the tube (Fig. 3)
[deg].

Subseripts

amb ambient environment

b bond

cor corrected

equ equivalent

f fluid

fin fin

i interior

min minimum

t tube

u infinitesimal element

0,1,2 integers used as subscripts.
Superscript

mean values.

FiG. 1. Cross-section of a finned absorber suitable for a CPC collector. The equivalent (i.e. of the same
absorbing surface) tubular absorber is also shown as dashed lines.
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following sections for two absorber configurations:
(i) a tubular absorber; (ii) a finned absorber.

2.1. Tubular absorber

For this case, a uniform flux distribution along the
absorber circumference is assumed, F’ can be ex-
pressed analytically as

Ry

4 = 3
F R +R+R;, @
where
R, = 1/U.CA4, @
_ DIn(D/Dy)
= ok ®)
D
R~ D, ©

The thermal resistances R;, R, and R; are based on
the absorber area A4, of the collector. However, the
overall heat-loss coefficient U, is normally based on
the aperture area, then the concentration ratio, C, of
the collector appears in equation (4): C =1 for flat-
plate collectors.

2.2. Finned absorber

For the geometry shown in Fig. 1 and for a uniform
flux distribution across the top surface of the fin, the
efficiency factor of the collector can be expressed as

Ry

F = x
Ry + Ry +fo Ry +fi (R +Ry)

@)

The various thermal resistances appearing in equation
(7) are all based on the absorber area, A4,, of the
collector and are considered below.

The thermal resistance R, between the absorber fin
and the environment is given by equation (4). The
thermal resistance of the free length of the fin is given
by

_ (Wa—w)(1—F)

Ren = m(l/ULCAr) ®

where the fin efficiency for a constant thickness fin is
given [1] by

_ tanh [(UL/kid5n) "> (Wen — w1)/2]
B (UL/kf(sﬁn)l/z(wﬁn -w)2

The terms R,, R, and R; in equation (7) correspond
to the thermal resistances of the bond, the tube and
the working fluid, respectively, calculated under the
assumption of a uniform-temperature distribution
(i.e. the temperatures at the interfaces of fin—bond,
bond—tube and tube-working fluid are constant).
These terms can be expressed analytically as

®

_ WinOp
Rb - wbkbAr (10)
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_ Wao In (d/d)
R= 2nk, A, an
_ Wiin
Re= o (12)

The non-uniform temperature distribution in the con-
sidered problem is taken into account by the adoption
of two corrective factors, f, and f,, applied to the
values provided by equations (10)—(12). Because in
most practical cases the term R, is negligible, the ther-
mal resistances R, and R; can be considered together,
and so a single corrective factor, f;, has been employed.

When f,, = f; = 1, equation (7) corresponds to that
given by Duffie and Beckman {1], although the term
R, was omitted by Duffie and Beckman as negligible.
Evaluating the corrective factors f, and f; allows the
overall effect of the assumption for a uniform tem-
perature distribution on F’ to be quantified.

3. THERMAL RESISTANCES FOR
NON-UNIFORM HEAT FLUXES

Consider the heat transfer for the general case
shown in Fig. 2: the heat flux 0,, is delivered to the
surface S, of a body of an arbitrary geometry and part
of this flux 0, is carried away from the surface S,. The
distributions of the heat fluxes on both surfaces S,
and S, are arbitrary and heat transfer between these
two surfaces may occur by conduction, convection
and/or radiation. Heat is also dissipated over the rest
of the external surface of the body at a local rate, ¢, .
No internal heat generation occurs.

F1G. 2. Schematic diagram of a general mode of heat transfer
within a body of arbitrary geometry.
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Under steady-state conditions and for a segment of
infinitesimal thickness du (Fig. 2), the heat flux O,
entering this segment is

Q.= f 4, ds,. 13
s,
The heat flux leaving this segment is
Qu+du = Qu_L q‘L dsp‘ (14)

The thermal resistance of the considered element is
defined as
_ dT,

(Qu + Qu+dt¢)§/2
where dT, = T,— T, 4, is the difference between the
mean temperatures of the upper and lower surfaces

of the considered element. The total thermal resistance
between surfaces S, and S, can be expressed as

L
Rip=| ——F— (16)

dR, (15)

where the boundary conditions applied are
Qu::ul = Q! }
Qu:uz = Q2'

Equation (16) provides the thermal resistance for
the generalized case of heat transfers within one or
more media. However, its application in a practical
case involves considerable difficulties in calculation. If
the side surface of the body is assumed to be perfectly
insulated (i.e. g, = 0,50 O, = 0, = @), then

Rj; = (TI - 7—ﬂz)/Q (18)

In the case of ¢ # 0, equation (18) will give an
overestimation of the thermal resistance involved if
0 = O, and an underestimation for Q = 0,. If ¢, is
varying between S, and S; such that a mean heat flux
0 = (0, +0,)/2 ensues between O, and Q,, then by
employing this latter value a realistic estimate for R},
close to that provided by equation (16) can be
obtained easily. This value can be compared with
the thermal resistance R, obtained by assuming a
uniform flux distribution. The value of R,, can be
derived analytically for simple geometries, e.g. for
uniform heat conduction through a slab of thickness
5 when S, =S,=3, it is R, = §/kS. A corrective
factor fis then defined as

f= R’lzf’Rm-

The thermal resistance R,, is related to the overall
heat-transfer coefficient 4,, between surfaces S; and
52 by

(a”n

(19)

Ry = 1/h,S (20)

where S = S, or S, is the surface on which 4, is based.
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The corrective factor f given by equation (19) can
be used consequently to derive the heat-transfer
coefficient &}, encountered under a non-uniform flux
distribution as

Mo = hoff. 21)

Supposing that the heat-transfer coeflicient 4,, is
known for a uniform flux distribution, equation (21)
can then be used to provide the value of this coefficient
under a non-uniform flux distribution.

4, THE ACTUAL THERMAL RESISTANCE OF THE
BOND AND THE FLUID

The corrective factors f, and f, express the ratio of
the thermal resistance under the actual prevailing flux
distribution to the thermal resistance under a uniform
flux distribution. These resistances are calculated
according to equations (18) and (10)—(12), respec-
tively.

4.1. The corrective factor f,
According to equation (18), the thermal resistance
of the tube—fiuid subsystem (Fig. 1) is

Ry = (Tb—t - Tr)/Q
where T, , is the mean temperature at the contact arc
of the bond—tube, T; the mean fluid temperature and

O the heat flux transferred. The corrective factor f, is
then expressed as

22)

/ 0
t

Y (23)

Williams [4] gave for this case an analytical solution
for the temperature distribution on the external sur-
face of the tube by

AT($) = — ht%idq/d(b 24

where
1/he = Vhe+8,/2k, (242)

AT(¢) is the local temperature difference between a
point of the external tube surface at an angular pos-
ition ¢ and the mean fluid temperature (Fig. 3), Ay
the heat-transfer coefficient from the exterior surface
of the tube to the working fluid, and

oz (dj_)
.. \ddo

xS exp(—Big+2nm—o) do. (25)

n= —o0

dg/d¢ = 0.58

dg/d¢ is the intensity of the flux at an angular position
¢, with
B = (hed®[4k,5,)'. (26)

Equation (24) can be solved by numerical inte-
gration to provide the mean temperature T, by
averaging the values it yields within the range of
o1 < ¢ < ¢, However, the actual distribution
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F1G6. 3. Cross-section of a tube exposed to a non-uniform
flux over the range ¢, < ¢ < ¢,. The non-uniform flux
distribution prevailing for w,/d = 0.75 is also shown.

(dgo/d¢) of the flux at the bond-tube interface (equa-
tion (25)) is not known at this stage. This will be
derived in the following section by considering the
fin—bond subsystem.

4.2. The corrective factor f,

The subsystem under consideration is shown in Fig.
4. The thermal resistance of the free length of the fin
AA’ has been already accounted for by equation (8).
In the considered subsystem AB,C,C,, the heat flux
enters through both surfaces AB, and AB, and is
delivered to surface C,C, (Fig. 4). For the purpose of
evaluating this thermal resistance, it is assumed that
no thermal losses occur from the fin and the external
surfaces B,C, and C,D of the bond and the tube,
respectively (i.e. the entire collected energy is delivered
to the working ftuid).

Two distinct thermal resistances occur in the con-

1107

sidered heat-transfer case, as the subsystem exhibits:
(i) a thermal resistance R, for the heat flux entering
from surface AB,; (ii) a thermal resistance R, for the
heat flux entering from surface AB, (Fig. 4). The
overall thermal resistance derives by proportional
summation of R, and R, as

Ry, = (W /W) Ry + (1 —wyfwgp) R, X))

where the fractions (wy/wg,) and (1 —wy/wg,) cor-
respond to the fractions of the heat flux entering from
surfaces AB, and AB,, respectively. The corrective
factor f, is then given as

fb = Ry/Rs.

The evaluation of thermal resistances R, and R,
from equation (18) involves the determination of the
temperature distribution over (i) surface AB, for a
uniform flux distribution over this surface only; (ii)
surface AB, for a uniform flux distribution over fin
surface AA’ only (Fig. 4).

A numerical solution was obtained by using a finite-
element computer package [5]. As this could only deal
with heat conduction, an ‘equivalent’ heat conduction
problem was devised. In particular, the convection of
heat from the tube to the working fluid with a heat-
transfer coeflicient A was replaced by conduction
through a solid layer of thickness (d—d,,)/2 (Fig. 4)
with an equivalent conductivity of

Keqw = he(d[2) In (d/d;,).

(28)

(29)

Although this transformed problem does not rep-
resent accurately the heat transfer behaviour inside the
tube, it is only with the fin-bond subsystem that we
are concerned at this stage, for which this trans-
formation is valid. A value of d/d, =8 has been
employed for this transformation.

5. DEDUCTIONS

Results derived from a combined numerical solu-
tion of the fin-bond and tube-working fluid sub-
systems are presented in this section. The values used
for various parameters are tabulated in Table 1.

The corrective factor f,, shown in Fig. 5 for a range
of bond widths, exhibits considerably higher values

VA )

Fi1G. 4. The bond element considered, consisting of the non-free length of the fin and the bond (solid lines).
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Table 1. Values used for various collector parameters

Parameter Symbol Value Unit

Concentration ratio C 1.55 —
Overall heat-loss coefficient U, 5 Wm2K™!
Internal diameter of tubular absorber D, 25 mm
Internal diameter of finned absorber d; 12 mm
Tube thickness in both absorbers 4, 1.5 mm
Thermal conductivity of tube k, 385t WmK™!
Thermal conductivity of fin Ko 385 Wm'K!
Fin length Win 88 mm
Fin thickness San 1 mm
Base thickness of bond S min 0.5 mm
Bond width W, 0.75d+t mm
Thermal conductivity of bond ks, 80 WmK!
Heat-transfer coefficient for the

inner surface of the tube by variable Wm K"}
Collected heat flux by the absorber 1) 745% Wm™?

+ Unless otherwise explicitly stated in the text or on the figures.
1 This value is based on the aperture area of the collector and incorporates optical losses.

than unity. The dependence of the f, factor on the
value of the heat-transfer coefficient inside the tube
was found to be very weak, so only a single curve is
shown.

The flux distribution over the arc of the tube in
contact with the bond was also deduced for all the
cases considered and was used subsequently for the
numerical integration of equation (25). A typical flux
distribution for wy/d = 0.75 is shown in Fig. 3. The
profiles of the temperature distribution over the
exterior surface of the tube can be seen in Fig. 6 to
exhibit a peak at the region corresponding to the
contact arc between the tube and the bond. The mag-
nitude of the encountered temperature drop (i.e. local
tube temperature minus average fluid temperature) is
shown to depend strongly on the heat-transfer
coefficient inside the tube.

35

3.0

25

CORRECTIVE FACTOR fp

20

L J5R SEN SR T SHu S S St SU N SN S S S e SuS S BN S S SN SN SN 2 a

10 " : -

The variations of the corrective factor f,, depicted
in Fig. 7 for some representative cases, are shown to
depend considerably on the conductivity of the tube
material. Although /, is generally smaller than f, (Figs.
5 and 7), the effect of £, on the collector efficiency
factor is greater, as f, is associated with a thermal
resistance of small magnitade. This is illustrated in
Table 2, where the magnitudes of the various thermal
resistances appearing in equation (7) are shown for
some representative cases. Also shown in Table 2 are
the values of the collector efficiency factors F” derived
without any correction (ie. f,=f,=1) and F,,
derived for the actual values of £, and f.

A more comprehensive comparison between F’ and
F. . can be seen in Fig. 8: the values of F, are
invariably lower than those of F’. For the particular
values of the parameters used (Table 1), the range of

I 1 1 J

0.4 0.5 0.6

0.7 0.8 0.9 10

DIMENSIONLESS BOND WIDTH , wp/d
F1G. 5. The corrective factor £, for various bond widths.
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FiG. 6. Temperature distributions over the exterior surface of the tube, shown for two values of the tube
conductivity and two values of the heat-transfer coefficient inside the tube.
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FIG. 7. The corrective factor f; shown for two values of the tube conductivity and three values of the bond

width.

Table 2. Magnitudes of the thermal resistances of the fin-bond and the tube-working fluid subsystems. These
results were derived for values of the relevant parameters appearing in Table 1

k, he JoRo SR AR
Wm~ K™ Wm—2K™Y (x 107°KW™)) (x 107’ KW~ F Fl,.
200 0.51 12.54 0.9068 0.901
385 900 0.51 3.19 0.9701 0.964
1600 0.51 1.95 0.9786 0.972
200 0.51 16.21 0.9064 0.878
45 900 0.51 5.58 0.9696 0.947
1600 0.51 391 0.9781 0.958
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FiG. 8. Collector efficiency factors F* and F,,, respectively, for a finned absorber as derived (i) with the

assumption of uniform flux distribution, (i) by

taking into account the non-uniformity of the flux

distribution. The curve corresponding to a tubular absorber is also shown by means of dotted lines.

overestimation resulting without applying a cor-
rection lies between 0.5 and 3%. Also shown in Fig.
8 is the collector efficiency factor for a tubular
absorber, as derived from equation (3) for the same
values of the relevant parameters that appear in Table
1. Although a direct comparison of the F’ values is
not recommended (the heat-transfer coefficients in the
working fluid are not necessarily the same under
actual operating conditions), it can be seen, however,
that a particular F;,, value for the tubular absorber
is higher than the F’ value for the finned absorber
throughout the range of k; values depicted.

6. DISCUSSION AND CONCLUSIONS

An analysis of the collector efficiency factors for
tubular and finned-tube absorbers in solar-energy col-
lectors has been presented. This was based on an
examination of the thermal resistances intervening in
the path of the heat flow. The employed method can
be applied generally under non-uniform flux dis-
tributions.

The results derived demonstrate that, under non-
uniform flux distribution, the thermal resistances
involved in a heat-transfer problem are generally
higher than those corresponding to a uniform flux
distribution. In particular, for a solar-energy collector
with a finned absorber, the calculation of the collector
efficiency factor F’ by ignoring the non-uniform flux
distribution at the various elements of the absorber
vields an overestimation of its value by a percentage

ranging from 0.5 to 3%. However, an underestimation
of the F’ value occurs [3], by a percentage not exceed-
ing 4%, when the axial, with respect to the working
fluid flow, variation of temperature is not taken into
account.

Thus, for many finned absorber designs, the coun-
teracting effects in the axial and radial directions can-
cel each other out. In such cases, equation (7) with
fo =1 =1 will provide a realistic prediction of the
efficiency factor of the collector. However, the validity
of such a simplified approach should be verified using
the presented analysis for generic absorber designs. In
addition, this analysis provides a more comprehensive
insight into the overall heat transfers that occur in the
absorber of a solar-energy collector.
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RESISTANCE THERMIQUE D'UN COLLECTEUR D’ENERGIE SOLAIRE SOUS UNE
DISTRIBUTION DE FLUX NON UNIFORME

Résumé—On traite d’'une méthode généralisée pour déterminer des résistances thermiques de milieux

subissant des distributions de flux non uniformes. Elle est appliquée 4 ’analyse des transferts thermiques

dans un tube 4 ailettes utilisé comme collecteur d’énergie solaire. On montre que, pour une distribution de

flux non uniforme, les valeurs des résistances thermiques sont supérieures a celles prédites dans le cas d’un

flux uniforme. Néanmoins pour un absorbeur a tube aileté ceci est compensé (soit partiellement, soit

dépassé suivant les caractéristiques particuliéres du collecteur) par un effet dfi a la variation axiale de la
température.

WARMELEITWIDERSTAND DES ABSORBERS IN EINEM SONNENKOLLEKTOR BEI
UNGLEICHFORMIGER WARMESTROMVERTEILUNG

Zusammenfassung—Es wurde ein allgemein giiltiges Verfahren zur Bestimmung des Wirmeleitwiderstandes
bei ungleichférmiger Wirmestromverteilung entwickelt. Das Verfahren wurde auf die Untersuchung der
Wiirmeleitung in einem berippten Rohr angewandt, das als Absorber in einem Sonnenkollektor installiert
ist. Die Untersuchung zeigt, daB der fiir gleichférmige Wirmestromverteilung berechnete Wirme-
leitwiderstand grundsétzlich niedriger ist als der bei ungleichformiger Wirmestromverteilung tatséchlich
ermittelte. Im Absorber eines Sonnenkollektors wird dies jedoch kompensiert (entweder teilweise oder
ganz, abhingig von den jeweiligen Eigenschaften des Kollektors) durch den entgegenwirkenden Einflul
der axialen Temperaturverteilung in dem berippten Absorber-Rohr.

TEIUIOBOE COITPOTUBJIEHUE ABCOPBEPA B KOJUVIEKTOPE COJTHEUYHON SHEPTUU
NP HEPABHOMEPHOM PACITPEAEJIEHHHU IIJIOTHOCTH TEILJIOBOTI'O [IOTOKA

Annmorauss—Pa3paboTan 0606WERNEI METOX onpelencHHs TEILUIOBOTO CONPOTHBIEHHMS Cped NpH
HEPaBHOMEPHOM DACIpE/C/ICHHH IIOTHOCTH TEIUIOBOro NoToka. MeToa npuMenéH npy aHaim3e TeIIo-
nepeHoca B opeGpénHoit TpyGe, Hemonb3yemoit B kadecTBe abcopbepa B KOIIEKTOPE COJTHETHOH SHEPTHH.
IToka3zaHo, 4To MPH HEPAaBHOMEPHOM PaclpeeNicHHH IUIOTHOCTH TEIUIOBOTO IOTOKA 3HAYEHHS TEIUIO-
BOrO CONPOTHBJIEHHA, IOJIYYCHHBIC B NMPEANOJOKEHHH PABHOMEPHOCTH PACHpENEICHHS, OKa3bIBAIOTCH,
Kak MpaBuJjIo, HAXe GakTHYeCKHX 3Hadennit. OnHaxko, s abecopbepa B popme opeGpénnoit Tpy6sI 310
3aHHXKEHHE 3HAYEHHA KOMIEHCHPYETCS (YACTHYHO MJIM MOJHOCTHIO, B 3aBHCHMOCTH OT XapaKTEPHCTHK
KOJIIEKTOPA) MPOTHBOTONIOXHBLIM BIHAHHEM Pacnpele/IHTENbHON QYHKUMH KOJUIEKTOPA, KOTOpOE MpH-
BOJIMT K OCEBOMY BRIDABHHBAHHIO TEMIEPATYPHL
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